

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

BREVET DE TECHNICIEN SUPÉRIEUR AGRICOLE TRAITEMENT DE DONNÉES

Toutes options

Durée: 180 minutes

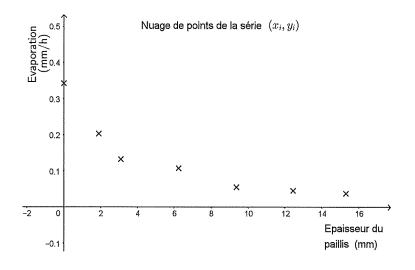
Matériel autorisé : Calculatrice

Le sujet comporte 7 pages.

Des extraits des tables de la loi du Khi2 et de la loi de Student sont fournis en fin de sujet.

L'annexe A est à rendre avec la copie après avoir été numérotée.

SUJET


EXERCICE 1 (6 points)

Dans cet exercice, toutes les valeurs calculées seront arrondies à 10^{-3} près.


Une étude est réalisée sur l'évaporation de l'eau d'un sol en fonction de l'épaisseur du paillis de ce sol. On désigne par X la variable statistique prenant pour valeur l'épaisseur du paillis en millimètres (mm) et Y la variable statistique prenant pour valeur l'évaporation en millimètres d'eau par heure (mm/h).

Les résultats obtenus sont présentés dans le tableau et le repère ci-dessous :

Épaisseur du paillis (x _i en mm)	0	1,9	3,1	6,25	9,37	12,44	15,31
Évaporation (y_i en mm/h)	0,3425	0,2031	0,1324	0,1075	0,0552	0,0457	0,0376

- 1. Présenter des arguments en faveur d'un rejet d'un ajustement affine de la série (x_i, y_i) .
- 2. On décide d'effectuer un changement de variable. On pose pour tout entier i variant de 1 à 7, $z_i = \frac{1}{y_i}$. Le nuage de points de la série (x_i, z_i) est représenté dans le repère ci-dessous.

Déterminer une équation de la droite d'ajustement de Z en X obtenue par la méthode des moindres carrés.

- 3. Déterminer le coefficient de détermination de la série (x_i, z_i) .
- **4.** Compléter le tableau des résidus de l'ajustement de Z en X se trouvant sur l'**Annexe A** (à rendre avec la copie après avoir été numérotée).
- **5.** Confirmer la pertinence d'un ajustement affine de la série (x_i, z_i) .
- **6.** Exprimer Y en fonction de X.
- 7. En déduire une estimation de l'évaporation correspondant à une épaisseur de paillis de 8 mm.

EXERCICE 2 (5 points)

Dans cet exercice, toutes les valeurs calculées seront arrondies à 10^{-2} près.

En 2022, la production de tomates destinées au marché frais était d'environ 523 500 tonnes. (AGRESTE).

Une enquête a été réalisée sur la qualité gustative de tomates en fonction du type de production (hors-sol ou pleine terre). Les résultats sont présentés dans le tableau ci-dessous :

Type de production Qualité gustative (échelle de 1 à 9)	Hors sol	Pleine terre
Fade à faible (1 à 2)	5	7
Moyenne (3 à 4)	21	13
Forte (5 à 7)	67	87
Intense à puissante (7 à 9)	35	46

Peut-on considérer, au vu des résultats obtenus sur l'échantillon, que la qualité gustative et le type de production sont indépendants ? On effectuera un test au seuil de risque de 0,05.

EXERCICE 3 (4 points)

Dans cet exercice, les résultats seront arrondis si nécessaire à 10^{-3} près.

L'hydroponie consiste à faire pousser des plantes sans terre sur un substrat. Différents substrats peuvent être utilisés en culture hydroponique. Le pH des substrats a un impact sur la fertilisation. Afin de contrôler le pH d'un substrat (ici la vermiculite) vendu par une coopérative, on a réalisé 10 mesures de pH. Les résultats sont les suivants :

On modélise le pH de la vermiculite par une variable aléatoire X distribuée suivant la loi normale d'espérance μ et d'écart type σ .

- **1.** Déterminer une estimation ponctuelle de μ .
- **2.** Déterminer une estimation ponctuelle de σ^2 .
- 3. Déterminer une estimation par intervalle de confiance du pH moyen de la vermiculite vendue par cette coopérative au niveau de confiance 0,95.

EXERCICE 4 (5 points)

Partie 1

Une urne contient 5 boules indiscernables au toucher dont deux sont repérées par la lettre A et trois par la lettre B.

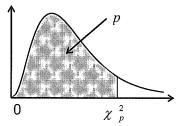
- L'expérience aléatoire n°1 consiste à prélever une boule dans l'urne.
 Déterminer la probabilité d'obtenir une boule notée A.
- 2. L'expérience aléatoire n°2 consiste à prélever deux boules sans remise dans l'urne contenant les cinq boules.

Justifier que la probabilité d'obtenir exactement deux boules notées A est égale à $\frac{1}{10}$.

Partie 2

On propose à un jury de 10 dégustateurs de comparer une tomate cultivée en serre et hors-sol (type A) à une tomate cultivée en pleine terre (type B) dans le but de déterminer si le type de production modifie le goût de la tomate.

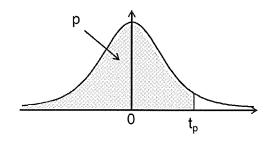
On présente à chacun des membres du jury deux tomates de type A et trois tomates de type B. Chaque dégustateur doit reconnaître les deux tomates différentes des trois autres. S'il y parvient, on dit qu'il a réussi l'épreuve.


- **1.** On définit la variable aléatoire *X* désignant le nombre d'épreuves réussies dans un jury de 10 dégustateurs.
 - a. Dans le cas où les dégustateurs répondent au hasard, on admet que la probabilité qu'un dégustateur réussisse l'épreuve revient à calculer la probabilité d'obtenir deux boules notées A dans l'expérience aléatoire n°2 définie dans la partie 1.
 Justifier alors que la variable aléatoire X est distribuée suivant une loi binomiale dont on précisera les paramètres.
 - **b.** Calculer $P(X \ge 2)$, arrondir la valeur à 10^{-3} près.
- 2. Lors de la dégustation, 5 dégustateurs ont réussi l'épreuve. Afin de percevoir si le type de production modifie le goût de la tomate, on adopte la règle suivante :
 - On note a le plus petit entier tel que $P(X \ge a) \le 0.05$.
 - Si, lors de la dégustation, le nombre de dégustateurs ayant réussi l'épreuve est supérieur ou égal à a, on considère que la tomate produite en serre ou hors-sol a un goût différent de celle cultivée en pleine terre.

On donne le tableau ci-dessous :

k	$P(X \ge k)$

3	0,07019083
4	0,0127952
5	0,001634937
6	0,00014690


Conclure quant à la différence de goût.

Fonction de répartition d'une variable du Khi2 à k degrés de liberté Valeurs χ^2_p telles que $\operatorname{Prob}(\chi^2 \leq \chi^2_p) = p$

p k	0,005	0,010	0,025	0,050	0,100	0,900	0,950	0,975	0,990	0,995
1	0,000	0,000	0,001	0,004	0,02	2,71	3,84	5,02	6,63	7,88
2	0,01	0,02	0,05	0,10	0,21	4,61	5,99	7,38	9,21	10,60
3	0,07	0,11	0,22	0,35	0,58	6,25	7,81	9,35	11,34	12,84
4	0,21	0,30	0,48	0,71	1,06	7,78	9,49	11,14	13,28	14,86
5	0,41	0,55	0,83	1,15	1,61	9,24	11,07	12,83	15,09	16,75
6	0,68	0,87	1,24	1,64	2,20	10,64	12,59	14,45	16,81	18,55
7	0,99	1,24	1,69	2,17	2,83	12,02	14,07	16,01	18,48	20,28
8	1,34	1,65	2,18	2,73	3,49	13,36	15,51	17,53	20,09	21,95
9	1,73	2,09	2,70	3,33	4,17	14,68	16,92	19,02	21,67	23,59
10	2,16	2,56	3,25	3,94	4,87	15,99	18,31	20,48	23,21	25,19

Fonction de répartition d'une variable de Student à k degrés de liberté. Valeurs t_p telles que $\text{Prob}(T \leq t_p$) = p

p	0,90	0,95	0,975	0,99	0,995	0,999	0,9995	
1	3,08	6,31	12,71	31,82	63,66	318,29	636,58	
2	1,89	2,92	4,30	6,96	9,92	22,33	31,60	
3	1,64	2,35	3,18	4,54	5,84	10,21	12,92	
4	1,53	2,13	2,78	3,75	4,60	7,17	8,61	
5	1,48	2,02	2,57	3,36	4,03	5,89	6,87	
6	1,44	1,94	2,45	3,14	3,71	5,21	5,96	
7	1,41	1,89	2,36	3,00	3,50	4,79	5,41	
8	1,40	1,86	2,31	2,90	3,36	4,50	5,04	
9	1,38	1,83	2,26	2,82	3,25	4,30	4,78	
10	1,37	1,81	2,23	2,76	3,17	4,14	4,59	
11	1,36	1,80	2,20	2,72	3,11	4,02	4,44	
12	1,36	1,78	2,18	2,68	3,05	3,93	4,32	
13	1,35	1,77	2,16	2,65	3,01	3,85	4,22	

MINISTERE DE L'AGRICULTURE

NOM:

EXAMEN:

Spécialité ou Option :

N° ne rien inscrire

(EN MAJUSCULES)

Prénoms:

EPREUVE:

Date de naissance :

Centre d'épreuve :

Date:

ANNEXE A (à compléter, numéroter et à rendre avec la copie)

N° ne rien inscrire

x_i	0	1,9	3,1	6,25	9,37	12,44	15,31
y_i	0,3425	0,2031	0,1324	0,1075	0,0552	0,0457	0,0376
Résidus e_i			0,553	-2,693	1,173	0,071	0,233